6 resultados para Hospitals

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do hospitals experience safety tipping points as utilization increases, and if so, what are the implications for hospital operations management? We argue that safety tipping points occur when managerial escalation policies are exhausted and workload variability buffers are depleted. Front-line clinical staff is forced to ration resources and, at the same time, becomes more error prone as a result of elevated stress hormone levels. We confirm the existence of safety tipping points for in-hospital mortality using the discharge records of 82,280 patients across six high-mortality-risk conditions from 256 clinical departments of 83 German hospitals. Focusing on survival during the first seven days following admission, we estimate a mortality tipping point at an occupancy level of 92.5%. Among the 17% of patients in our sample who experienced occupancy above the tipping point during the first seven days of their hospital stay, high occupancy accounted for one in seven deaths. The existence of a safety tipping point has important implications for hospital management. First, flexible capacity expansion is more cost-effective for safety improvement than rigid capacity, because it will only be used when occupancy reaches the tipping point. In the context of our sample, flexible staffing saves more than 40% of the cost of a fully staffed capacity expansion, while achieving the same reduction in mortality. Second, reducing the variability of demand by pooling capacity in hospital clusters can greatly increase safety in a hospital system, because it reduces the likelihood that a patient will experience occupancy levels beyond the tipping point. Pooling the capacity of nearby hospitals in our sample reduces the number of deaths due to high occupancy by 34%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hospitals are facing a triple challenge - meeting mandatory climate change targets and refurbishing aging infrastructure while simultaneously providing quality of care. With the potential of more frequent disruptive weather events, a UK government-funded project was launched in 2009 to investigate practical strategies for the National Health Service to increase its resilience to climate change. This paper presents the process of defining resilience by using the Delphi method and demonstrates its applicability within healthcare design. A Delphi survey is nearing completion which has determined the significant resilience issues and temperature ranges for ideal and critical conditions. Our preliminary findings identified six priorities that lead towards increasing resilience. Using the Delphi method can be a useful tool in clarifying the focus for healthcare design considerations. Copyright © 2002-2012 The Design Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a hospital environment that demands a careful balance between commercial and clinical interests, the extent to which physicians are involved in hospital leadership varies greatly. This paper assesses the influence of the extent of this involvement on staff-to-patient ratios. Using data gathered from 604 hospitals across Germany, this study evidences the positive relationship between a full-time medical director (MD) or heavily involved part-time MD and a higher staff-to-patient ratio. The data allows us to control for a range of confounding variables, such as size, rural/urban location, ownership structure, and case-mix. The results contribute to the sparse body of empirical research on the effect of clinical leadership on organizational outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: This study identifies the stakeholders who have a role in medical device purchasing within the wider system of health-care delivery and reports on their particular challenges to promote patient safety during purchasing decisions. METHODS: Data was collected through observational work, participatory workshops, and semi-structured qualitative interviews, which were analyzed and coded. The study takes a systems-based and engineering design approach to the study. Five hospitals took part in this study, and the participants included maintenance, training, clinical end-users, finance, and risk departments. RESULTS: The main stakeholders for purchasing were identified to be staff from clinical engineering (Maintenance), device users (Clinical), device trainers (Training), and clinical governance for analyzing incidents involving devices (Risk). These stakeholders display varied characteristics in terms of interpretation of their own roles, competencies for selecting devices, awareness and use of resources for purchasing devices, and attitudes toward the purchasing process. The role of "clinical engineering" is seen by these stakeholders to be critical in mediating between training, technical, and financial stakeholders but not always recognized in practice. CONCLUSIONS: The findings show that many device purchasing decisions are tackled in isolation, which is not optimal for decisions requiring knowledge that is currently distributed among different people within different departments. The challenges expressed relate to the wider system of care and equipment management, calling for a more systemic view of purchasing for medical devices.